"""Generic search functions that can be used to find data in
the object store.
"""
import logging
from typing import Any, Optional, Union
import warnings
from openghg.objectstore.metastore import open_metastore
from openghg.store.spec import define_data_types
from openghg.objectstore import get_readable_buckets
from openghg.util import decompress, running_on_hub
from openghg.types import ObjectStoreError
from openghg.dataobjects import SearchResults
from ._search_helpers import process_search_kwargs
logger = logging.getLogger("openghg.retrieve")
logger.setLevel(logging.DEBUG) # Have to set level for logger as well as handler
[docs]
def search_bc(
species: Optional[str] = None,
bc_input: Optional[str] = None,
domain: Optional[str] = None,
start_date: Optional[str] = None,
end_date: Optional[str] = None,
period: Optional[Union[str, tuple]] = None,
continuous: Optional[bool] = None,
**kwargs: Any,
) -> SearchResults:
"""Search for boundary condition data.
Args:
species: Species name
bc_input: Input used to create boundary conditions. For example:
- a model name such as "MOZART" or "CAMS"
- a description such as "UniformAGAGE" (uniform values based on AGAGE average)
domain: Region for boundary conditions
start_date: Start date (inclusive) for boundary conditions
end_date: End date (exclusive) for boundary conditions
period: Period of measurements. Only needed if this can not be inferred from the time coords
If specified, should be one of:
- "yearly", "monthly"
- suitable pandas Offset Alias
- tuple of (value, unit) as would be passed to pandas.Timedelta function
continuous: Whether time stamps have to be continuous.
kwargs: Additional search terms
Returns:
SearchResults: SearchResults object
"""
if start_date is not None:
start_date = str(start_date)
if end_date is not None:
end_date = str(end_date)
return search(
species=species,
bc_input=bc_input,
domain=domain,
start_date=start_date,
end_date=end_date,
period=period,
continuous=continuous,
data_type="boundary_conditions",
**kwargs,
)
[docs]
def search_eulerian(
model: Optional[str] = None,
species: Optional[str] = None,
start_date: Optional[str] = None,
end_date: Optional[str] = None,
**kwargs: Any,
) -> SearchResults:
"""Search for eulerian data.
Args:
model: Eulerian model name
species: Species name
start_date: Start date (inclusive) associated with model run
end_date: End date (exclusive) associated with model run
kwargs: Additional search terms
Returns:
SearchResults: SearchResults object
"""
if start_date is not None:
start_date = str(start_date)
if end_date is not None:
end_date = str(end_date)
return search(
model=model,
species=species,
start_date=start_date,
end_date=end_date,
data_type="eulerian_model",
**kwargs,
)
[docs]
def search_flux(
species: Optional[str] = None,
source: Optional[str] = None,
domain: Optional[str] = None,
database: Optional[str] = None,
database_version: Optional[str] = None,
model: Optional[str] = None,
start_date: Optional[str] = None,
end_date: Optional[str] = None,
time_resolved: Optional[bool] = None,
high_time_resolution: Optional[bool] = None, # DEPRECATED: use time_resolved instead
period: Optional[Union[str, tuple]] = None,
continuous: Optional[bool] = None,
**kwargs: Any,
) -> SearchResults:
"""Search for flux / emissions data.
Args:
species: Species name
domain: Flux / Emissions domain
source: Flux / Emissions source
database: Name of database source for this input (if relevant)
database_version: Name of database version (if relevant)
model: Model name (if relevant)
source_format : Type of data being input e.g. openghg (internal format)
time_resolved: If this is a high resolution file
period: Period of measurements. Only needed if this can not be inferred from the time coords
If specified, should be one of:
- "yearly", "monthly"
- suitable pandas Offset Alias
- tuple of (value, unit) as would be passed to pandas.Timedelta function
high_time_resolution: This argument is deprecated and will be replaced in future versions with time_resolved.
continuous: Whether time stamps have to be continuous.
kwargs: Additional search terms
Returns:
SearchResults: SearchResults object
"""
if start_date is not None:
start_date = str(start_date)
if end_date is not None:
end_date = str(end_date)
return search(
species=species,
source=source,
domain=domain,
database=database,
database_version=database_version,
model=model,
start_date=start_date,
end_date=end_date,
time_resolved=high_time_resolution,
period=period,
continuous=continuous,
data_type="flux",
**kwargs,
)
[docs]
def search_surface(
species: Union[str, list[str], None] = None,
site: Union[str, list[str], None] = None,
inlet: Union[str, slice, None, list[Union[str, slice, None]]] = None,
height: Union[str, slice, None, list[Union[str, slice, None]]] = None,
instrument: Union[str, list[str], None] = None,
data_level: Union[str, list[str], dict, None] = None,
data_sublevel: Union[str, list[str], None] = None,
dataset_source: Optional[str] = None,
data_source: Optional[str] = None,
measurement_type: Union[str, list[str], None] = None,
source_format: Union[str, list[str], None] = None,
network: Union[str, list[str], None] = None,
start_date: Union[str, list[str], None] = None,
end_date: Union[str, list[str], None] = None,
sampling_height: Optional[str] = None,
icos_data_level: Union[int, str, None] = None,
**kwargs: Any,
) -> SearchResults:
"""Cloud object store search.
Args:
species: Species
site: Three letter site code
inlet: Inlet height above ground level in metres; use `slice(lower, upper)` to
search for a range of values. `lower` and `upper` can be int, float, or strings
such as '100m'.
height: Alias for inlet
instrument: Instrument name
data_level: Data quality assurance level (0-3)
data_sublevel: Typically used for "L1" data depending on different QA
performed before data is finalised.
data_source: Where data was retrieved from (used especially when retrieved from external archives)
e.g. "internal", "noaa_obspack", "icoscp", "ceda_archive". This
argument only needs to be used to narrow the search to data solely from retrieval methods.
dataset_source: External name applied to source of the dataset,
for example "ICOS", "InGOS", "European ObsPack", "CEDA 2023.06"
measurement_type: Measurement type
data_type: Data type e.g. "surface", "column", "flux"
See openghg.store.spec.define_data_types() for full details.
start_date: Start date
end_date: End date
sampling_height: Sampling height of measurements
icos_data_level: ICOS data level, see ICOS documentation
kwargs: Additional search terms
Returns:
SearchResults: SearchResults object
"""
from openghg.util import format_inlet, format_data_level
if start_date is not None:
start_date = str(start_date)
if end_date is not None:
end_date = str(end_date)
# Allow height to be an alias for inlet but we do not expect height
# to be within the metadata (for now)
if inlet is None and height is not None:
inlet = height
inlet = format_inlet(inlet)
# Ensure data_level input is formatted
if isinstance(data_level, list):
data_level = [format_data_level(value) for value in data_level]
elif isinstance(data_level, dict):
data_level = {k: format_data_level(v) for k, v in data_level.items()}
else:
data_level = format_data_level(data_level)
# The icos_data_level keyword may be present but for all newly retrieved ICOS data this
# will be replaced with just data_level.
if icos_data_level is not None:
warnings.warn(
"The 'icos_data_level' argument is deprecated and will be replaced in future versions with 'data_level'.",
DeprecationWarning,
)
results = search(
species=species,
site=site,
inlet=inlet,
instrument=instrument,
data_level=data_level,
data_sublevel=data_sublevel,
data_source=data_source,
dataset_source=dataset_source,
measurement_type=measurement_type,
data_type="surface",
source_format=source_format,
start_date=start_date,
end_date=end_date,
network=network,
sampling_height=sampling_height,
icos_data_level=icos_data_level,
**kwargs,
)
return results
[docs]
def search_column(
satellite: Optional[str] = None,
domain: Optional[str] = None,
selection: Optional[str] = None,
site: Optional[str] = None,
species: Optional[str] = None,
network: Optional[str] = None,
instrument: Optional[str] = None,
platform: Optional[str] = None,
**kwargs: Any,
) -> SearchResults:
"""Search column data.
Args:
satellite: Name of satellite (if relevant)
domain: For satellite only. If data has been selected on an area include the
identifier name for domain covered. This can map to previously defined domains
(see openghg_defs "domain_info.json" file) or a newly defined domain.
selection: For satellite only, identifier for any data selection which has been
performed on satellite data. This can be based on any form of filtering, binning etc.
but should be unique compared to other selections made e.g. "land", "glint", "upperlimit".
If not specified, domain will be used.
site : Site code/name (if relevant). Can include satellite OR site.
species: Species name or synonym e.g. "ch4"
instrument: Instrument name e.g. "TANSO-FTS"
network: Name of in-situ or satellite network e.g. "TCCON", "GOSAT"
platform: Type of platform. Should be one of:
- "satellite"
- "site"
kwargs: Additional search terms
Returns:
SearchResults: SearchResults object
"""
return search(
satellite=satellite,
domain=domain,
selection=selection,
site=site,
species=species,
network=network,
instrument=instrument,
platform=platform,
data_type="column",
**kwargs,
)
[docs]
def search(**kwargs: Any) -> SearchResults:
"""Search for observations data. Any keyword arguments may be passed to the
the function and these keywords will be used to search the metadata associated
with each Datasource.
Though any types can be passed as keyword arguments, these will be interpreted in the following ways:
- None - argument will be ignored.
- list/tuple - an OR search will be created for the argument and each of the values.
- dict - an OR search will be created for the key, value pairs.
- Note: in this case the name of argument itself will be ignored.
- str/other - argument used directly.
All input search values are formatted (openghg.utils.clean_string).
This function detects the running environment and routes the call
to either the cloud or local search function.
Example / commonly used arguments are given below.
Args:
species: Terms to search for in Datasources
locations: Where to search for the terms in species
inlet: Inlet height such as 100m
instrument: Instrument name such as picarro
find_all: Require all search terms to be satisfied
start_date: Start datetime for search.
If None a start datetime of UNIX epoch (1970-01-01) is set
end_date: End datetime for search.
If None an end datetime of the current datetime is set
Returns:
SearchResults or None: SearchResults object is results found, otherwise None
"""
from openghg.cloud import call_function
if running_on_hub():
post_data: dict[str, Union[str, dict]] = {}
post_data["function"] = "search"
post_data["search_terms"] = kwargs
result = call_function(data=post_data)
content = result["content"]
found = content["found"]
compressed_response = content["result"]
if found:
data_str = decompress(compressed_response)
sr = SearchResults.from_json(data=data_str)
else:
sr = SearchResults()
else:
sr = _base_search(**kwargs)
return sr
def _base_search(**kwargs: Any) -> SearchResults:
"""Search for observations data. Any keyword arguments may be passed to the
the function and these keywords will be used to search metadata.
Though any types can be passed as keyword arguments, these will be interpreted in the following ways:
- None - argument will be ignored.
- list/tuple - an OR search will be created for the argument and each of the values.
- dict - an OR search will be created for the key, value pairs.
- Note: in this case the name of argument itself will be ignored.
- str/other - argument used directly.
All input search values are formatted (openghg.utils.clean_string).
This function will only perform a "local" search. It may be used either by a cloud function
or when using OpenGHG locally, it does no environment detection.
We suggest using the search function that takes care of everything for you.
Example / commonly used arguments are given below.
Args:
species: Terms to search for in Datasources
locations: Where to search for the terms in species
inlet: Inlet height such as 100m
instrument: Instrument name such as picarro
find_all: Require all search terms to be satisfied
start_date: Start datetime for search.
If None a start datetime of UNIX epoch (1970-01-01) is set
end_date: End datetime for search.
If None an end datetime of the current datetime is set
Returns:
SearchResults or None: SearchResults object is results found, otherwise None
"""
from openghg.util import (
clean_string,
dates_overlap,
format_inlet,
synonyms,
timestamp_epoch,
timestamp_now,
timestamp_tzaware,
)
from pandas import Timedelta as pd_Timedelta
if running_on_hub():
raise ValueError(
"This function can't be used on the OpenGHG Hub, please use openghg.retrieve.search instead."
)
# Select and format the search terms
# - ignore any kwargs which are None
# - clean search terms directly or within data structures
search_kwargs = {}
for k, v in kwargs.items():
if k.lower() in {"inlet", "height", "inlet_height_magl", "station_height_masl"}:
v = format_inlet(v)
elif isinstance(v, (list, tuple)):
v = [clean_string(value) for value in v if value is not None]
if not v: # Check empty list
v = None
elif isinstance(v, dict):
v = {key: clean_string(value) for key, value in v.items() if value is not None}
if not v: # Check empty dict
v = None
else:
v = clean_string(v)
if v is not None:
search_kwargs[k] = v
# Species translation
species = search_kwargs.get("species")
if species is not None:
if not isinstance(species, list):
species = [species]
updated_species = [synonyms(sp) for sp in species]
search_kwargs["species"] = updated_species
# get data types to search and validate
data_type = search_kwargs.get("data_type")
valid_data_types = define_data_types()
types_to_search = []
if data_type is not None:
if not isinstance(data_type, list):
data_type = [data_type]
for d in data_type:
if d not in valid_data_types:
raise ValueError(
f"{data_type} is not a valid data type, please select one of {valid_data_types}"
)
types_to_search.append(d)
else:
types_to_search.extend(valid_data_types)
# Get a dictionary of all the readable buckets available
# We'll iterate over each of them
readable_buckets = get_readable_buckets()
# If we're given a store then we'll just read from that one
store = search_kwargs.pop("store", None)
if store:
try:
readable_buckets = {store: readable_buckets[store]}
except KeyError:
raise ObjectStoreError(f"Invalid store: {store}")
start_date = search_kwargs.pop("start_date", None)
end_date = search_kwargs.pop("end_date", None)
expanded_search = process_search_kwargs(search_kwargs)
general_metadata = {}
for bucket_name, bucket in readable_buckets.items():
metastore_records = []
for data_type in types_to_search:
with open_metastore(bucket=bucket, data_type=data_type, mode="r") as metastore:
for v in expanded_search:
res = metastore.search(**v)
if res:
metastore_records.extend(res)
if not metastore_records:
continue
# Add in a quick check to make sure we don't have dupes
# TODO - remove this once a more thorough tests are added
uuids = [s["uuid"] for s in metastore_records]
if len(uuids) != len(set(uuids)):
error_msg = "Multiple results found with same UUID!"
logger.exception(msg=error_msg)
raise ValueError(error_msg)
# Here we create a dictionary of the metadata keyed by the Datasource UUID
# we'll create a pandas DataFrame out of this in the SearchResult object
# for better printing / searching within a notebook
metadata = {r["uuid"]: r for r in metastore_records}
# Add in the object store to the metadata the user sees
for m in metadata.values():
m.update({"object_store": bucket})
# Narrow the search to a daterange if dates passed
if start_date is not None or end_date is not None:
if start_date is None:
start_date = timestamp_epoch()
else:
start_date = timestamp_tzaware(start_date) + pd_Timedelta("1s")
if end_date is None:
end_date = timestamp_now()
else:
end_date = timestamp_tzaware(end_date) - pd_Timedelta("1s")
metadata_in_daterange = {}
# TODO - we can remove this now the metastore contains the start and end dates of the Datasources
for uid, record in metadata.items():
meta_start = record["start_date"]
meta_end = record["end_date"]
if dates_overlap(start_a=start_date, end_a=end_date, start_b=meta_start, end_b=meta_end):
metadata_in_daterange[uid] = record
if not metadata_in_daterange:
logger.warning(
f"No data found for the dates given in the {bucket_name} store, please try a wider search."
)
# Update the metadata we'll use to create the SearchResults object
metadata = metadata_in_daterange
# Remove once more comprehensive tests are done
dupe_uuids = [k for k in metadata if k in general_metadata]
if dupe_uuids:
raise ObjectStoreError("Duplicate UUIDs found between buckets.")
general_metadata.update(metadata)
return SearchResults(
metadata=general_metadata, start_result="data_type", start_date=start_date, end_date=end_date
)