from datetime import date
from typing import Dict, List, Optional, Tuple, Union
from pandas import DataFrame, DateOffset, DatetimeIndex, Timedelta, Timestamp
from xarray import Dataset
import re
from openghg.types import TimePeriod
__all__ = [
"timestamp_tzaware",
"timestamp_now",
"timestamp_epoch",
"daterange_from_str",
"daterange_to_str",
"create_daterange_str",
"create_daterange",
"daterange_overlap",
"combine_dateranges",
"split_daterange_str",
"closest_daterange",
"valid_daterange",
"find_daterange_gaps",
"trim_daterange",
"split_encompassed_daterange",
"daterange_contains",
"sanitise_daterange",
"check_nan",
"check_date",
"first_last_dates",
"time_offset_definition",
"parse_period",
"create_frequency_str",
"time_offset",
"relative_time_offset",
"find_duplicate_timestamps",
"in_daterange",
"evaluate_sampling_period",
]
# TupleTimeType = Tuple[Union[int, float], str]
[docs]
def find_duplicate_timestamps(data: Union[Dataset, DataFrame]) -> List:
"""Check for duplicates
Args:
data: Data object to check. Should have a time attribute or index
Returns:
list: A list of duplicates
"""
from numpy import unique
try:
time_data = data.time
except AttributeError:
try:
time_data = data.index
except AttributeError:
raise ValueError("Unable to read time data")
uniq, count = unique(time_data, return_counts=True)
dupes = uniq[count > 1]
return list(dupes)
[docs]
def timestamp_tzaware(timestamp: Union[str, Timestamp]) -> Timestamp:
"""Returns the pandas Timestamp passed as a timezone (UTC) aware
Timestamp.
Args:
timestamp (pandas.Timestamp): Timezone naive Timestamp
Returns:
pandas.Timestamp: Timezone aware
"""
if not isinstance(timestamp, Timestamp):
timestamp = Timestamp(timestamp)
if timestamp.tzinfo is None:
return timestamp.tz_localize(tz="UTC")
else:
return timestamp.tz_convert(tz="UTC")
[docs]
def timestamp_now() -> Timestamp:
"""Returns a pandas timezone (UTC) aware Timestamp for the current time.
Returns:
pandas.Timestamp: Timestamp at current time
"""
from pandas import Timestamp
return timestamp_tzaware(Timestamp.now())
[docs]
def timestamp_epoch() -> Timestamp:
"""Returns the UNIX epoch time
1st of January 1970
Returns:
pandas.Timestamp: Timestamp object at epoch
"""
from pandas import Timestamp
return timestamp_tzaware(Timestamp("1970-1-1 00:00:00"))
[docs]
def daterange_overlap(daterange_a: str, daterange_b: str) -> bool:
"""Check if daterange_a is within daterange_b.
Args:
daterange_a (str): Timezone aware daterange string. Example:
2014-01-30-10:52:30+00:00_2014-01-30-13:22:30+00:00
daterange_b (str): As daterange_a
Returns:
bool: True if daterange included
"""
from pandas import Timestamp
split_a = daterange_a.split("_")
split_b = daterange_b.split("_")
start_a = Timestamp(ts_input=split_a[0], tz="UTC")
end_a = Timestamp(ts_input=split_a[1], tz="UTC")
start_b = Timestamp(ts_input=split_b[0], tz="UTC")
end_b = Timestamp(ts_input=split_b[1], tz="UTC")
# For this logic see
# https://stackoverflow.com/a/325964
return bool(start_a <= end_b and end_a >= start_b)
[docs]
def create_daterange(start: Timestamp, end: Timestamp, freq: Optional[str] = "D") -> DatetimeIndex:
"""Create a minute aligned daterange
Args:
start: Start date
end: End date
Returns:
pandas.DatetimeIndex
"""
from pandas import date_range
if start > end:
raise ValueError("Start date is after end date")
start = timestamp_tzaware(start)
end = timestamp_tzaware(end)
return date_range(start=start, end=end, freq=freq)
[docs]
def create_daterange_str(start: Union[str, Timestamp], end: Union[str, Timestamp]) -> str:
"""Convert the passed datetimes into a daterange string
for use in searches and Datasource interactions
Args:
start_date: Start date
end_date: End date
Returns:
str: Daterange string
"""
start = timestamp_tzaware(start)
end = timestamp_tzaware(end)
if start > end:
raise ValueError(f"Invalid daterange, start ({start}) > end ({end})")
start = str(start).replace(" ", "-")
end = str(end).replace(" ", "-")
return "_".join((start, end))
[docs]
def daterange_from_str(daterange_str: str, freq: Optional[str] = "D") -> DatetimeIndex:
"""Get a Pandas DatetimeIndex from a string. The created
DatetimeIndex has minute frequency.
Args:
daterange_str (str): Daterange string
of the form 2019-01-01T00:00:00_2019-12-31T00:00:00
Returns:
pandas.DatetimeIndex: DatetimeIndex covering daterange
"""
from pandas import date_range
split = daterange_str.split("_")
# Align the seconds
start = timestamp_tzaware(split[0])
end = timestamp_tzaware(split[1])
return date_range(start=start, end=end, freq=freq)
[docs]
def daterange_to_str(daterange: DatetimeIndex) -> str:
"""Takes a pandas DatetimeIndex created by pandas date_range converts it to a
string of the form 2019-01-01-00:00:00_2019-03-16-00:00:00
Args:
daterange (pandas.DatetimeIndex)
Returns:
str: Daterange in string format
"""
start = str(daterange[0]).replace(" ", "-")
end = str(daterange[-1]).replace(" ", "-")
return "_".join([start, end])
[docs]
def combine_dateranges(dateranges: List[str]) -> List[str]:
"""Combine dateranges
Args:
dateranges: Daterange strings
Returns:
list: List of combined dateranges
Modified from
https://codereview.stackexchange.com/a/69249
"""
if len(dateranges) == 1:
return dateranges
def sort_key(tup: Tuple) -> Timestamp:
return tup[0]
intervals = [split_daterange_str(x) for x in dateranges]
sorted_by_lower_bound = sorted(intervals, key=sort_key)
combined: List[Timestamp] = []
for higher in sorted_by_lower_bound:
if not combined:
combined.append(higher)
else:
lower = combined[-1]
# Test for intersection between lower and higher:
# We know via sorting that lower[0] <= higher[0]
if higher[0] <= lower[1]:
upper_bound = max(lower[1], higher[1])
# Replace by combined interval
combined[-1] = (lower[0], upper_bound)
else:
combined.append(higher)
combined_strings = [create_daterange_str(start=a, end=b) for a, b in combined]
return combined_strings
[docs]
def split_daterange_str(
daterange_str: str, date_only: bool = False
) -> Tuple[Union[Timestamp, date], Union[Timestamp, date]]:
"""Split a daterange string to the component start and end
Timestamps
Args:
daterange_str: Daterange string of the form
date_only: Return only the date portion of the Timestamp, removing
the hours / seconds component
2019-01-01T00:00:00_2019-12-31T00:00:00
Returns:
tuple (Timestamp / datetime.date, Timestamp / datetime.date): Tuple of start, end timestamps / dates
"""
split = daterange_str.split("_")
start = timestamp_tzaware(split[0])
end = timestamp_tzaware(split[1])
if date_only:
start = start.date()
end = end.date()
return start, end
[docs]
def valid_daterange(daterange: str) -> bool:
"""Check if the passed daterange is valid
Args:
daterange: Daterange string
Returns:
bool: True if valid
"""
from openghg.util import split_daterange_str
start, end = split_daterange_str(daterange)
if start >= end:
return False
return True
[docs]
def closest_daterange(to_compare: str, dateranges: Union[str, List[str]]) -> str:
"""Finds the closest daterange in a list of dateranges
Args:
to_compare: Daterange (as a string) to compare
dateranges: List of dateranges
Returns:
str: Daterange from dateranges that's the closest in time to to_compare
"""
from openghg.util import split_daterange_str
from pandas import Timedelta
min_start = Timedelta("3650days")
min_end = Timedelta("3650days")
if not isinstance(dateranges, list):
dateranges = [dateranges]
dateranges = sorted(dateranges)
start_comp, end_comp = split_daterange_str(daterange_str=to_compare)
# We want to iterate over the dateranges and first check if they overlap
# if they do, return that daterange
# otherwise check how far apart the
for daterange in dateranges:
# If they're close to overlap the start and end will be close
start, end = split_daterange_str(daterange_str=daterange)
# Check for an overlap
if start <= end_comp and end >= start_comp:
raise ValueError("Overlapping daterange.")
# Find the min between all the starts and all the ends
diff_start_end = abs(start_comp - end)
if diff_start_end < min_start:
min_start = diff_start_end
closest_daterange_start = daterange
diff_end_start = abs(end_comp - start)
if diff_end_start < min_end:
min_end = diff_end_start
closest_daterange_end = daterange
if min_start < min_end:
return closest_daterange_start
else:
return closest_daterange_end
[docs]
def find_daterange_gaps(start_search: Timestamp, end_search: Timestamp, dateranges: List[str]) -> List[str]:
"""Given a start and end date and a list of dateranges find the gaps.
For example given a list of dateranges
example = ['2014-09-02_2014-11-01', '2016-09-02_2018-11-01']
start = timestamp_tzaware("2012-01-01")
end = timestamp_tzaware("2019-09-01")
gaps = find_daterange_gaps(start, end, example)
gaps == ['2012-01-01-00:00:00+00:00_2014-09-01-00:00:00+00:00',
'2014-11-02-00:00:00+00:00_2016-09-01-00:00:00+00:00',
'2018-11-02-00:00:00+00:00_2019-09-01-00:00:00+00:00']
Args:
start_search: Start timestamp
end_search: End timestamp
dateranges: List of daterange strings
Returns:
list: List of dateranges
"""
from openghg.util import pairwise
from pandas import Timedelta
if not dateranges:
return []
sorted_dateranges = sorted(dateranges)
# The difference between the start and end of the successive dateranges
range_gap = Timedelta("1h")
min_gap = Timedelta("30m")
# First find the gap between the start and the end
start_first, _ = split_daterange_str(sorted_dateranges[0])
gaps = []
if start_search < start_first:
gap_start = start_search
gap_end = start_first - range_gap
if gap_end - gap_start > min_gap:
gap = create_daterange_str(start=gap_start, end=gap_end)
gaps.append(gap)
# Then find the gap between the end
_, end_last = split_daterange_str(sorted_dateranges[-1])
if end_search > end_last:
gap_end = end_search
gap_start = end_last + range_gap
if gap_end - gap_start > min_gap:
gap = create_daterange_str(start=gap_start, end=gap_end)
gaps.append(gap)
for a, b in pairwise(sorted_dateranges):
start_a, end_a = split_daterange_str(a)
start_b, end_b = split_daterange_str(b)
# Ignore any that are outside our search window
if end_a < start_search or start_a > end_search:
continue
diff = start_b - end_a
if diff > min_gap:
gap_start = end_a + range_gap
gap_end = start_b - range_gap
gap = create_daterange_str(start=gap_start, end=gap_end)
gaps.append(gap)
else:
pass
gaps.sort()
return gaps
[docs]
def daterange_contains(container: str, contained: str) -> bool:
"""Check if the daterange container contains the daterange contained
Args:
container: Daterange
contained: Daterange
Returns:
bool
"""
start_a, end_a = split_daterange_str(container)
start_b, end_b = split_daterange_str(contained)
return bool(start_a <= start_b and end_b <= end_a)
[docs]
def trim_daterange(to_trim: str, overlapping: str) -> str:
"""Removes overlapping dates from to_trim
Args:
to_trim: Daterange to trim down. Dates that overlap
with overlap_daterange will be removed from to_trim
overlap_daterange: Daterange containing dates we want to trim
from to_trim
Returns:
str: Trimmed daterange
"""
from pandas import Timedelta
if not daterange_overlap(daterange_a=to_trim, daterange_b=overlapping):
raise ValueError(f"Dateranges {to_trim} and {overlapping} do not overlap")
# We need to work out which way round they overlap
start_trim, end_trim = split_daterange_str(to_trim)
start_overlap, end_overlap = split_daterange_str(overlapping)
delta_gap = Timedelta("1s")
# Work out if to_trim is before or after the overlap_daterange
if start_trim < start_overlap and end_overlap > end_trim:
new_end_trim = start_overlap - delta_gap
return create_daterange_str(start=start_trim, end=new_end_trim)
else:
new_start_trim = end_overlap + delta_gap
return create_daterange_str(start=new_start_trim, end=end_trim)
[docs]
def split_encompassed_daterange(container: str, contained: str) -> Dict:
"""Checks if one of the passed dateranges contains the other, if so, then
split the larger daterange into three sections.
<---a--->
<---------b----------->
Here b is split into three and we end up with:
<-dr1-><---a---><-dr2->
Args:
daterange_a: Daterange
daterange_b: Daterange
Returns:
dict: Dictionary of results
"""
container_start, container_end = split_daterange_str(daterange_str=container)
contained_start, contained_end = split_daterange_str(daterange_str=contained)
# First check one contains the other
if not (container_start <= contained_start and contained_end <= container_end):
raise ValueError(f"Range {container} does not contain {contained}")
# Gap to add between dateranegs so they don't overlap
delta_gap = Timedelta("1s")
# If the difference is less than this we'll assume they're the same timestamp
tolerance = Timedelta("2h")
results = {}
# If one of them starts at the same point we just want to split the range in two
if abs(contained_start - container_start) < tolerance:
new_contained = create_daterange_str(start=contained_start, end=contained_end)
dr1_start = contained_end + delta_gap
dr1 = create_daterange_str(start=dr1_start, end=container_end)
results["container_start"] = dr1
results["contained"] = new_contained
return results
if abs(contained_end - container_end) < tolerance:
new_contained = create_daterange_str(start=contained_start, end=contained_end)
dr1_end = contained_start - delta_gap
dr1 = create_daterange_str(start=container_start, end=dr1_end)
results["container_start"] = dr1
results["contained"] = new_contained
return results
dr1_start = container_start
dr1_end = contained_start - delta_gap
dr1 = create_daterange_str(start=dr1_start, end=dr1_end)
dr3_start = contained_end + delta_gap
dr3_end = container_end
dr3 = create_daterange_str(start=dr3_start, end=dr3_end)
# Trim a gap off the end of contained
new_contained_end = contained_end - delta_gap
new_contained = create_daterange_str(start=contained_start, end=new_contained_end)
results["container_start"] = dr1
results["contained"] = new_contained
results["container_end"] = dr3
return results
[docs]
def sanitise_daterange(daterange: str) -> str:
"""Make sure the daterange is correct and return
tzaware daterange.
Args:
daterange: Daterange str
Returns:
str: Timezone aware daterange str
"""
start, end = split_daterange_str(daterange)
if start >= end:
raise ValueError("Invalid daterange, start after end date")
return create_daterange_str(start=start, end=end)
[docs]
def check_date(date: str) -> str:
"""Check if a date string can be converted to a pd.Timestamp
and returns NA if not.
Returns a string that can be JSON serialised.
Args:
date: String to test
Returns:
str: Returns NA if not a date, otherwise date string
"""
from pandas import Timestamp, isnull
try:
d = Timestamp(date)
if isnull(d):
return "NA"
return date
except ValueError:
return "NA"
[docs]
def check_nan(data: Union[int, float]) -> Union[str, float, int]:
"""Check if a number is Nan.
Returns a string that can be JSON serialised.
Args:
data: Number
Returns:
str, float, int: Returns NA if not a number else number
"""
from math import isnan
if isnan(data):
return "NA"
else:
return round(data, 3)
[docs]
def first_last_dates(keys: List) -> Tuple[Timestamp, Timestamp]:
"""Find the first and last timestamp from a list of keys
Args:
keys: List of keys
Returns:
tuple: First and last timestamp
"""
def sorting_key(s: str) -> str:
return s.split("/")[-1]
sorted_keys = sorted(keys, key=sorting_key)
first_daterange = sorted_keys[0].split("/")[-1]
first_date = first_daterange.split("_")[0]
last_daterange = sorted_keys[-1].split("/")[-1]
last_date = last_daterange.split("_")[-1]
first = timestamp_tzaware(first_date)
last = timestamp_tzaware(last_date)
return first, last
[docs]
def time_offset_definition() -> Dict[str, List]:
"""
Returns synonym definition for time offset inputs.
Accepted inputs are as follows:
- "months": "monthly", "months", "month", "MS"
- "years": "yearly", "years", "annual", "year", "AS", "YS"
- "weeks": "weekly", "weeks", "week", "W"
- "days": "daily", "days", "day", "D"
- "hours": "hourly", "hours", "hour", "hr", "h", "H"
- "minutes": "minutely", "minutes", "minute", "min", "m", "T"
- "seconds": "secondly", "seconds", "second", "sec", "s", "S"
This is to ensure the correct keyword for using the DataOffset and TimeDelta
functions can be supplied (want this to be "years", "months" etc.)
Returns:
dict: containing list of values of synonym values
"""
offset_naming = {
"months": ["monthly", "months", "month", "MS"],
"years": ["yearly", "years", "annual", "year", "AS", "YS", "YS-JAN"],
"weeks": ["weekly", "weeks", "week", "W"],
"days": ["daily", "days", "day", "D"],
"hours": ["hourly", "hours", "hour", "hr", "h", "H"],
"minutes": ["minutely", "minutes", "minute", "min", "m", "T"],
"seconds": ["secondly", "seconds", "second", "sec", "s", "S"],
}
return offset_naming
[docs]
def parse_period(period: Union[str, tuple]) -> TimePeriod:
"""
Parses period input and converts to a value, unit pair.
Check time_offset_definition() for accepted input units.
Args:
period: Period of measurements.
Should be one of:
- "yearly", "monthly"
- suitable pandas Offset Alias
- tuple of (value, unit) as would be passed to pandas.Timedelta function
Returns:
TimePeriod: class containing value and associated time period (subclass of NamedTuple)
Examples:
>>> parse_period("12H")
TimePeriod(12, "hours")
>>> parse_period("yearly")
TimePeriod(1, "years")
>>> parse_period("monthly")
TimePeriod(1, "months")
>>> parse_period((1, "minute"))
TimePeriod(1, "minutes")
"""
import re
if isinstance(period, tuple):
if len(period) != 2:
raise ValueError(
"Input for period not recognised: {period}. For tuple input requires (value, unit)."
)
else:
value_in = period[0]
if isinstance(value_in, str):
try:
value: Union[int, float] = int(value_in)
except ValueError:
value = float(value_in)
else:
value = int(value_in)
unit = str(period[1])
else:
match = re.match(r"\d+[.]?\d*", period)
if match is not None:
try:
value_str = match.group()
value = int(value_str)
except ValueError:
value = float(value_str)
unit = period.lstrip(value_str).strip() # Strip found value and any whitespace.
else:
value = 1
unit = period
offset_naming = time_offset_definition()
for key, values in offset_naming.items():
if unit in values:
unit = key
break
return TimePeriod(value, unit)
[docs]
def create_frequency_str(
value: Optional[Union[int, float]] = None,
unit: Optional[str] = None,
period: Optional[Union[str, tuple]] = None,
include_units: bool = True,
) -> str:
"""
Create a suitable frequency string based either a value and unit pair
or a period value. The unit will be made singular if the value is 1.
Check time_offset_definition() for accepted input units.
Args:
value, unit: Value and unit pair to use
period: Suitable input for period (see parse_period() for more details)
Returns:
str : Formatted string
Examples:
>>> create_frequency_str(unit=1, value="hour")
"1 hour"
>>> create_frequency(period="3MS")
"3 months"
>>> create_frequency(period="yearly")
"1 year"
"""
if period is not None:
value, unit = parse_period(period)
if value is None or unit is None:
raise ValueError(f"Unable to derive time value and unit from period: {period}")
elif value is None or unit is None:
raise ValueError("If period is not included, both value and unit must be specified.")
if value == 1:
frequency_str = f"{value} {unit.rstrip('s')}"
else:
frequency_str = f"{value} {unit}"
return frequency_str
[docs]
def time_offset(
value: Optional[Union[int, float]] = None,
unit: Optional[str] = None,
period: Optional[Union[str, tuple]] = None,
) -> Timedelta:
"""
Create time offset based on inputs. This will return a Timedelta object
and cannot create relative offsets (this includes "weeks", "months", "years").
Args:
value, unit: Value and unit pair to use
period: Suitable input for period (see parse_period() for more details)
Returns:
Timedelta : Time offset object
"""
if period is not None:
value, unit = parse_period(period)
elif value is None or unit is None:
raise ValueError("If period is not included, both value and unit must be specified.")
if unit in ("weeks", "months", "years"):
raise ValueError(
"Unable to calculate time offset with unit of {unit}. Try relative_time_offset() function instead"
)
time_delta = Timedelta(value, unit)
return time_delta
[docs]
def relative_time_offset(
value: Optional[Union[int, float]] = None,
unit: Optional[str] = None,
period: Optional[Union[str, tuple]] = None,
) -> Union[DateOffset, Timedelta]:
"""
Create relative time offset based on inputs. This is based on the pandas
DateOffset and Timedelta functions.
Check time_offset_definition() for accepted input units.
If the input is "years" or "months" a relative offset (DateOffset) will
be created since these are variable units. For example:
- "2013-01-01" + 1 year relative offset = "2014-01-01"
- "2012-05-01" + 2 months relative offset = "2012-07-01"
Otherwise the Timedelta function will be used.
Args:
value, unit: Value and unit pair to use
period: Suitable input for period (see parse_period() for more details)
Returns:
DateOffset/Timedelta : Time offset object, appropriate for the period type
"""
if period is not None:
value, unit = parse_period(period)
elif value is None or unit is None:
raise ValueError("If period is not included, both value and unit must be specified.")
relative_units = ("weeks", "months", "years")
if unit in relative_units:
time_delta = DateOffset(**{unit: value})
else:
time_delta = time_offset(value, unit)
return time_delta
[docs]
def in_daterange(
start_a: Union[str, Timestamp],
end_a: Union[str, Timestamp],
start_b: Union[str, Timestamp],
end_b: Union[str, Timestamp],
) -> bool:
"""Check if two dateranges overlap.
Args:
start: Start datetime
end: End datetime
Returns:
bool: True if overlap
"""
from openghg.util import timestamp_tzaware
start_a = timestamp_tzaware(start_a)
end_a = timestamp_tzaware(end_a)
start_b = timestamp_tzaware(start_b)
end_b = timestamp_tzaware(end_b)
return bool((start_a <= end_b) and (end_a >= start_b))
def dates_overlap(
start_a: Union[str, Timestamp],
end_a: Union[str, Timestamp],
start_b: Union[str, Timestamp],
end_b: Union[str, Timestamp],
) -> bool:
"""Check if two dateranges overlap.
Args:
start: Start datetime
end: End datetime
Returns:
bool: True if overlap
"""
from openghg.util import timestamp_tzaware
start_a = timestamp_tzaware(start_a)
end_a = timestamp_tzaware(end_a)
start_b = timestamp_tzaware(start_b)
end_b = timestamp_tzaware(end_b)
return bool((start_a <= end_b) and (end_a >= start_b))
def dates_in_range(
keys: List[str], start_date: Union[Timestamp, str], end_date: Union[Timestamp, str]
) -> List[str]:
"""Returns the keys in the key list that are between the given dates
Args:
keys: List of daterange keys
start_date: Start date
end_date: End date
Returns:
list: List of keys
"""
start_date = timestamp_tzaware(start_date)
end_date = timestamp_tzaware(end_date)
in_date = []
for key in keys:
start_key, end_key = split_daterange_str(daterange_str=key)
if (start_key <= end_date) and (end_key >= start_date):
in_date.append(key)
return in_date
def evaluate_sampling_period(sampling_period: Optional[Union[Timedelta, str]]) -> Optional[str]:
"""
Check the sampling period input and convert this into a string containing the
sampling period in seconds.
Args:
sampling_period: str or Timedelta value for the time to sample.
Returns:
str : Sampling period as a string containing the number of seconds.
TODO: Integrate sampling_period handling into logic for time_period (if practical)
"""
# If we have a sampling period passed we want the number of seconds
if sampling_period is not None:
# Check format of input string matches expected
sampling_period = str(sampling_period)
re_sampling_period = re.compile(r"\d+[.]?\d*\s*[a-zA-Z]+")
check_format = re_sampling_period.search(sampling_period)
# If pattern is not matched this returns a None - indicating string is in incorrect form
if check_format is None:
raise ValueError(
f"Invalid sampling period: '{sampling_period}'. Must be specified as a string with unit (e.g. 1m for 1 minute)."
)
# Check string passed can be evaluated as a Timedelta object and extract this in seconds.
try:
sampling_period_td = Timedelta(sampling_period)
except ValueError as e:
raise ValueError(
f"Could not evaluate sampling period: '{sampling_period}'. Must be specified as a string with valid unit (e.g. 1m for 1 minute)."
) from e
sampling_period = str(float(sampling_period_td.total_seconds()))
# Check if sampling period has resolved to 0 seconds.
if sampling_period == "0.0":
raise ValueError(
f"Sampling period resolves to <= 0.0 seconds. Please check input: '{sampling_period}'"
)
# TODO: May want to add check for NaT or NaN
return sampling_period