Source code for openghg.standardise.surface._crds

from pathlib import Path
from typing import Dict, Optional, Tuple, Union

from openghg.standardise.meta import dataset_formatter
from openghg.types import optionalPathType
from pandas import DataFrame, Timedelta


[docs] def parse_crds( filepath: Union[str, Path], site: str, network: str, inlet: Optional[str] = None, instrument: Optional[str] = None, sampling_period: Optional[Union[str, float, int]] = None, measurement_type: Optional[str] = None, drop_duplicates: bool = True, update_mismatch: str = "never", site_filepath: optionalPathType = None, **kwargs: Dict, ) -> Dict: """Parses a CRDS data file and creates a dictionary of xarray Datasets ready for storage in the object store. Args: filepath: Path to file site: Three letter site code network: Network name inlet: Inlet height instrument: Instrument name sampling_period: Sampling period in seconds measurement_type: Measurement type e.g. insitu, flask drop_duplicates: Drop measurements at duplicate timestamps, keeping the first. update_mismatch: This determines how mismatches between the internal data "attributes" and the supplied / derived "metadata" are handled. This includes the options: - "never" - don't update mismatches and raise an AttrMismatchError - "from_source" / "attributes" - update mismatches based on input data (e.g. data attributes) - "from_definition" / "metadata" - update mismatches based on associated data (e.g. site_info.json) site_filepath: Alternative site info file (see openghg/openghg_defs repository for format). Otherwise will use the data stored within openghg_defs/data/site_info JSON file by default. Returns: dict: Dictionary of gas data """ from pathlib import Path from openghg.standardise.meta import assign_attributes from openghg.util import format_inlet if not isinstance(filepath, Path): filepath = Path(filepath) inlet = format_inlet(inlet) # This may seem like an almost pointless function as this is all we do # but it makes it a lot easier to test assign_attributes gas_data = _read_data( filepath=filepath, site=site, network=network, inlet=inlet, instrument=instrument, sampling_period=sampling_period, measurement_type=measurement_type, drop_duplicates=drop_duplicates, ) gas_data = dataset_formatter(data=gas_data) # Ensure the data is CF compliant gas_data = assign_attributes( data=gas_data, site=site, sampling_period=sampling_period, update_mismatch=update_mismatch, site_filepath=site_filepath, ) return gas_data
def _read_data( filepath: Path, site: str, network: str, inlet: Optional[str] = None, instrument: Optional[str] = None, sampling_period: Optional[Union[str, float, int]] = None, measurement_type: Optional[str] = None, site_filepath: optionalPathType = None, drop_duplicates: bool = True, ) -> Dict: """Read the datafile passed in and extract the data we require. Args: filepath: Path to file site: Three letter site code network: Network name inlet: Inlet height instrument: Instrument name sampling_period: Sampling period in seconds measurement_type: Measurement type e.g. insitu, flask site_filepath: Alternative site info file (see openghg/openghg_defs repository for format). Otherwise will use the data stored within openghg_defs/data/site_info JSON file by default. drop_duplicates: Drop measurements at duplicate timestamps, keeping the first. Returns: dict: Dictionary of gas data """ import warnings from openghg.util import clean_string, find_duplicate_timestamps, format_inlet, load_internal_json from pandas import RangeIndex, read_csv, to_datetime split_fname = filepath.stem.split(".") site = site.lower() try: site_fname = clean_string(split_fname[0]) inlet_fname = clean_string(split_fname[3]) except IndexError: raise ValueError( "Error reading metadata from filename, we expect a form hfd.picarro.1minute.100m.dat" ) if site_fname != site: raise ValueError("Site mismatch between passed site code and that read from filename.") if "m" not in inlet_fname: raise ValueError("No inlet found, we expect filenames such as: bsd.picarro.1minute.108m.dat") if inlet is not None and inlet != inlet_fname: raise ValueError("Inlet mismatch between passed inlet and that read from filename.") else: inlet = inlet_fname # Catch dtype warnings # TODO - look at setting dtypes - read header and data separately? with warnings.catch_warnings(): warnings.simplefilter("ignore") data = read_csv( filepath, header=None, skiprows=1, sep=r"\s+", parse_dates={"time": [0, 1]}, index_col="time", ) dupes = find_duplicate_timestamps(data=data) if dupes and not drop_duplicates: raise ValueError(f"Duplicate dates detected: {dupes}") data = data.loc[~data.index.duplicated(keep="first")] # Get the number of gases in dataframe and number of columns of data present for each gas n_gases, n_cols = _gas_info(data=data) header = data.head(2) skip_cols = sum([header[column][0] == "-" for column in header.columns]) metadata = _read_metadata(filepath=filepath, data=data) if network is not None: metadata["network"] = network if sampling_period is not None: sampling_period = float(sampling_period) # Compare against value extracted from the file name file_sampling_period = Timedelta(seconds=float(metadata["sampling_period"])) given_sampling_period = Timedelta(seconds=sampling_period) comparison_seconds = abs(given_sampling_period - file_sampling_period).total_seconds() tolerance_seconds = 1 if comparison_seconds > tolerance_seconds: raise ValueError( f"Input sampling period {sampling_period} does not match to value " f"extracted from the file name of {metadata['sampling_period']} seconds." ) # Read the scale from JSON # I'll leave this here for the possible future movement from class to functions network_metadata = load_internal_json(filename="process_gcwerks_parameters.json") crds_metadata = network_metadata["CRDS"] # This dictionary is used to store the gas data and its associated metadata combined_data = {} for n in range(n_gases): # Slice the columns gas_data = data.iloc[:, skip_cols + n * n_cols : skip_cols + (n + 1) * n_cols] # Reset the column numbers gas_data.columns = RangeIndex(gas_data.columns.size) species = gas_data[0][0] species = species.lower() column_labels = [ species, f"{species}_variability", f"{species}_number_of_observations", ] # Name columns gas_data = gas_data.set_axis(column_labels, axis="columns") header_rows = 2 # Drop the first two rows now we have the name gas_data = gas_data.drop(index=gas_data.head(header_rows).index) gas_data.index = to_datetime(gas_data.index, format="%y%m%d %H%M%S") # Cast data to float64 / double gas_data = gas_data.astype("float64") gas_data = gas_data.dropna(axis="rows", how="any") # Here we can convert the Dataframe to a Dataset and then write the attributes gas_data = gas_data.to_xarray() site_attributes = _get_site_attributes( site=site, inlet=inlet, crds_metadata=crds_metadata, site_filepath=site_filepath ) scale = crds_metadata["default_scales"].get(species.upper(), "NA") # Create a copy of the metadata dict species_metadata = metadata.copy() species_metadata["species"] = clean_string(species) species_metadata["inlet"] = format_inlet(inlet, key_name="inlet") species_metadata["calibration_scale"] = scale species_metadata["long_name"] = site_attributes["long_name"] species_metadata["data_type"] = "surface" # Make sure metadata keys are included in attributes site_attributes.update(species_metadata) combined_data[species] = { "metadata": species_metadata, "data": gas_data, "attributes": site_attributes, } return combined_data def _read_metadata(filepath: Path, data: DataFrame) -> Dict: """Parse CRDS files and create a metadata dict Args: filepath: Data filepath data: Raw pandas DataFrame Returns: dict: Dictionary containing metadata """ from openghg.util import format_inlet # Find gas measured and port used type_meas = data[2][2] port = data[3][2] # Split the filename to get the site and resolution split_filename = str(filepath.name).split(".") if len(split_filename) < 4: raise ValueError( "Error reading metadata from filename. The expected format is \ {site}.{instrument}.{sampling period}.{height}.dat" ) site = split_filename[0] instrument = split_filename[1] sampling_period_str = split_filename[2] inlet = split_filename[3] if sampling_period_str == "1minute": sampling_period = "60.0" elif sampling_period_str == "hourly": sampling_period = "3600.0" else: raise ValueError("Unable to read sampling period from filename.") metadata = {} metadata["site"] = site metadata["instrument"] = instrument metadata["sampling_period"] = str(sampling_period) metadata["inlet"] = format_inlet(inlet, key_name="inlet") metadata["port"] = port metadata["type"] = type_meas return metadata def _get_site_attributes( site: str, inlet: str, crds_metadata: Dict, site_filepath: optionalPathType = None, ) -> Dict: """Gets the site specific attributes for writing to Datsets Args: site: Site name inlet: Inlet height, example: 108m crds_metadata: General CRDS metadata site_filepath: Alternative site info file (see openghg/openghg_defs repository for format). Otherwise will use the data stored within openghg_defs/data/site_info JSON file by default. Returns: dict: Dictionary of attributes """ from openghg.util import get_site_info, format_inlet try: site_attributes: Dict = crds_metadata["sites"][site.upper()] global_attributes: Dict = site_attributes["global_attributes"] except KeyError: raise ValueError(f"Unable to read attributes for site: {site}") # TODO - we need to combine the metadata full_site_metadata = get_site_info(site_filepath) attributes = global_attributes.copy() try: metadata = full_site_metadata[site.upper()] except KeyError: pass else: network_key = next(iter(metadata)) site_metadata = metadata[network_key] attributes["station_latitude"] = str(site_metadata["latitude"]) attributes["station_longitude"] = str(site_metadata["longitude"]) attributes["station_long_name"] = site_metadata["long_name"] attributes["station_height_masl"] = site_metadata["height_station_masl"] attributes["inlet_height_magl"] = format_inlet(inlet, key_name="inlet_height_magl") attributes["comment"] = crds_metadata["comment"] attributes["long_name"] = site_attributes["gcwerks_site_name"] return attributes def _gas_info(data: DataFrame) -> Tuple[int, int]: """Returns the number of columns of data for each gas that is present in the dataframe Args: data: Measurement data Returns: tuple (int, int): Number of gases, number of columns of data for each gas """ from openghg.util import unanimous # Slice the dataframe head_row = data.head(1) gases: Dict[str, int] = {} # Loop over the gases and find each unique value for column in head_row.columns: s = head_row[column][0] if s != "-": gases[s] = gases.get(s, 0) + 1 # Check that we have the same number of columns for each gas if not unanimous(gases): raise ValueError( "Each gas does not have the same number of columns. Please ensure data" "is of the CRDS type expected by this module" ) return len(gases), list(gases.values())[0]