Source code for openghg.standardise.surface._npl
from pathlib import Path
from typing import Dict, Optional
from openghg.standardise.meta import assign_attributes, dataset_formatter
from openghg.types import pathType
from openghg.util import clean_string, load_internal_json
from pandas import read_csv
[docs]
def parse_npl(
filepath: pathType,
site: str = "NPL",
network: str = "LGHG",
inlet: Optional[str] = None,
instrument: Optional[str] = None,
sampling_period: Optional[str] = None,
measurement_type: Optional[str] = None,
update_mismatch: str = "never",
) -> Dict:
"""Reads NPL data files and returns the UUIDS of the Datasources
the processed data has been assigned to
Args:
filepath: Path of file to load
site: Site name
network: Network, defaults to LGHG
inlet: Inlet height. Will be inferred if not specified
instrument: Instrument name
sampling_period: Sampling period
measurement_type: Type of measurement taken e.g."flask", "insitu"
update_mismatch: This determines how mismatches between the internal data
"attributes" and the supplied / derived "metadata" are handled.
This includes the options:
- "never" - don't update mismatches and raise an AttrMismatchError
- "from_source" / "attributes" - update mismatches based on input data (e.g. data attributes)
- "from_definition" / "metadata" - update mismatches based on associated data (e.g. site_info.json)
Returns:
list: UUIDs of Datasources data has been assigned to
"""
from openghg.util import format_inlet, get_site_info, synonyms
if sampling_period is None:
sampling_period = "NOT_SET"
filepath = Path(filepath)
site_upper = site.upper()
network_upper = network.upper()
attributes_data = load_internal_json(filename="attributes.json")
npl_params = attributes_data[site_upper]
site_data = get_site_info()
site_info = site_data[site_upper][network_upper]
data = read_csv(filepath, parse_dates={"time": [0]}, index_col=0, date_format="%d/%m/%Y %H:%M")
# Drop the NaT/NaNs
data = data.loc[data.index.dropna()]
# Rename columns
rename_dict = {"Cal_CO2_dry": "CO2", "Cal_CH4_dry": "CH4"}
data = data.rename(columns=rename_dict)
try:
site_inlet_values = site_info["height"]
except KeyError:
raise ValueError(
f"Unable to extract inlet height details for site '{site}'. Please input inlet value."
)
inlet = format_inlet(inlet)
if inlet is None:
inlet = site_inlet_values[0] # Use first entry
inlet = format_inlet(inlet)
elif inlet not in site_inlet_values:
print(f"WARNING: inlet value of '{inlet}' does not match to known inlet values")
gas_data = {}
for species_column in data.columns:
processed_data = data.loc[:, [species_column]].sort_index().to_xarray()
# Convert methane to ppb
if species_column == "CH4":
processed_data[species_column] *= 1000
species = clean_string(species_column)
species = synonyms(species, allow_new_species=True)
# No averaging applied to raw obs, set variability to 0 to allow get_obs to calculate
# when averaging
processed_data["{} variability".format(species)] = processed_data[species_column] * 0.0
site_attributes = npl_params["global_attributes"]
site_attributes["inlet"] = inlet
site_attributes["inlet_height_magl"] = format_inlet(inlet, key_name="inlet_height_magl")
site_attributes["instrument"] = npl_params["instrument"]
attributes = site_attributes
attributes["species"] = species
metadata = {
"species": species,
"sampling_period": str(sampling_period),
"site": "NPL",
"network": "LGHG",
"inlet": inlet,
"data_type": "surface",
"source_format": "npl",
}
# TODO - add in better metadata reading
gas_data[species] = {
"metadata": metadata,
"data": processed_data,
"attributes": attributes,
}
gas_data = dataset_formatter(data=gas_data)
gas_data = assign_attributes(data=gas_data, site=site, network=network, update_mismatch=update_mismatch)
return gas_data