Store#
Storage#
These classes are used to store each type of data in the object store. Each has a static load function that loads a version of itself from the object store. The read_file function is then used to read data files, call standardisation functions based on the format of the data file, collect metadata and then store the data and metadata in the object store.
openghg.store.BoundaryConditions#
The BoundaryConditions
class is used to standardise and store boundary conditions data.
- class openghg.store.BoundaryConditions(bucket)[source]#
This class is used to process boundary condition data
- read_data(binary_data, metadata, file_metadata, source_format)[source]#
Ready a footprint from binary data
- Parameters:
binary_data (
bytes
) – Footprint datametadata (
dict
) – Dictionary of metadatafile_metadat – File metadata
source_format (
str
) – Type of data being input e.g. openghg (internal format)
- Returns:
UUIDs of Datasources data has been assigned to
- Return type:
dict
- read_file(filepath, species, bc_input, domain, source_format, period=None, continuous=True, if_exists='auto', save_current='auto', overwrite=False, force=False, compressor=None, filters=None, chunks=None, optional_metadata=None)[source]#
Read boundary conditions file
- Parameters:
filepath (
str
|Path
) – Path of boundary conditions filespecies (
str
) – Species namebc_input (
str
) – Input used to create boundary conditions. For example: - a model name such as “MOZART” or “CAMS” - a description such as “UniformAGAGE” (uniform values based on AGAGE average)domain (
str
) – Region for boundary conditionssource_format (
str
) – Type of data being input e.g. openghg (internal format)period (
Union
[str
,tuple
,None
]) –Period of measurements. Only needed if this can not be inferred from the time coords If specified, should be one of:
”yearly”, “monthly”
suitable pandas Offset Alias
tuple of (value, unit) as would be passed to pandas.Timedelta function
continuous (
bool
) – Whether time stamps have to be continuous.if_exists (
str
) –What to do if existing data is present. - “auto” - checks new and current data for timeseries overlap
adds data if no overlap
raises DataOverlapError if there is an overlap
”new” - just include new data and ignore previous
”combine” - replace and insert new data into current timeseries
save_current (
str
) – Whether to save data in current form and create a new version. - “auto” - this will depend on if_exists input (“auto” -> False), (other -> True) - “y” / “yes” - Save current data exactly as it exists as a separate (previous) version - “n” / “no” - Allow current data to updated / deletedoverwrite (
bool
) – Deprecated. This will use options for if_exists=”new”.force (
bool
) – Force adding of data even if this is identical to data stored.compressor (
Optional
[Any
]) – A custom compressor to use. If None, this will default to Blosc(cname=”zstd”, clevel=5, shuffle=Blosc.SHUFFLE). See https://zarr.readthedocs.io/en/stable/api/codecs.html for more information on compressors.filters (
Optional
[Any
]) – Filters to apply to the data on storage, this defaults to no filtering. See https://zarr.readthedocs.io/en/stable/tutorial.html#filters for more information on picking filters.chunks (
Optional
[dict
]) – Chunking schema to use when storing data. It expects a dictionary of dimension name and chunk size, for example {“time”: 100}. If None then a chunking schema will be set automatically by OpenGHG. See documentation for guidance on chunking: https://docs.openghg.org/tutorials/local/Adding_data/Adding_ancillary_data.html#chunking. To disable chunking pass in an empty dictionary.optional_metadata (
Optional
[dict
]) – Allows to pass in additional tags to distinguish added data. e.g {“project”:”paris”, “baseline”:”Intem”}
- Returns:
Dictionary of files processed and datasource UUIDs data assigned to
- Return type:
dict
- static schema()[source]#
Define schema for boundary conditions Dataset.
- Includes volume mole fractions for each time and ordinal, vertical boundary at the edge of the defined domain:
- “vmr_n”, “vmr_s”
expected dimensions: (“time”, “height”, “lon”)
- “vmr_e”, “vmr_w”
expected dimensions: (“time”, “height”, “lat”)
Expected data types for all variables and coordinates also included.
- Returns:
Contains schema for BoundaryConditions.
- Return type:
DataSchema
- static validate_data(data)[source]#
Validate input data against BoundaryConditions schema - definition from BoundaryConditions.schema() method.
- Parameters:
data (
Dataset
) – xarray Dataset in expected format- Return type:
None
- Returns:
None
Raises a ValueError with details if the input data does not adhere to the BoundaryConditions schema.
openghg.store.Emissions#
The Emissions
class is used to process emissions / flux data files.
openghg.store.EulerianModel#
The EulerianModel
class is used to process Eulerian model data.
- class openghg.store.EulerianModel(bucket)[source]#
This class is used to process Eulerian model data
- read_file(filepath, model, species, source_format='openghg', start_date=None, end_date=None, setup=None, if_exists='auto', save_current='auto', overwrite=False, force=False, compressor=None, filters=None, chunks=None, optional_metadata=None)[source]#
Read Eulerian model output
- Parameters:
filepath (
str
|Path
) – Path of Eulerian model species outputmodel (
str
) – Eulerian model namespecies (
str
) – Species namesource_format (
str
) – Data format, for example openghg (internal format)start_date (
Optional
[str
]) – Start date (inclusive) associated with model runend_date (
Optional
[str
]) – End date (exclusive) associated with model runsetup (
Optional
[str
]) – Additional setup details for runif_exists (
str
) –What to do if existing data is present. - “auto” - checks new and current data for timeseries overlap
adds data if no overlap
raises DataOverlapError if there is an overlap
”new” - just include new data and ignore previous
”combine” - replace and insert new data into current timeseries
save_current (
str
) – Whether to save data in current form and create a new version. - “auto” - this will depend on if_exists input (“auto” -> False), (other -> True) - “y” / “yes” - Save current data exactly as it exists as a separate (previous) version - “n” / “no” - Allow current data to updated / deletedoverwrite (
bool
) – Deprecated. This will use options for if_exists=”new”.force (
bool
) – Force adding of data even if this is identical to data stored.compressor (
Optional
[Any
]) – A custom compressor to use. If None, this will default to Blosc(cname=”zstd”, clevel=5, shuffle=Blosc.SHUFFLE). See https://zarr.readthedocs.io/en/stable/api/codecs.html for more information on compressors.filters (
Optional
[Any
]) – Filters to apply to the data on storage, this defaults to no filtering. See https://zarr.readthedocs.io/en/stable/tutorial.html#filters for more information on picking filters.chunks (
Optional
[dict
]) – Chunking schema to use when storing data. It expects a dictionary of dimension name and chunk size, for example {“time”: 100}. If None then a chunking schema will be set automatically by OpenGHG. See documentation for guidance on chunking: https://docs.openghg.org/tutorials/local/Adding_data/Adding_ancillary_data.html#chunking. To disable chunking pass in an empty dictionary.optional_metadata (
Optional
[dict
]) – Allows to pass in additional tags to distinguish added data. e.g {“project”:”paris”, “baseline”:”Intem”}
- Return type:
dict
openghg.store.Footprints#
The Footprints
class is used to store and retrieve meteorological data from the ECMWF data store.
Some data may be cached locally for quicker access.
- class openghg.store.Footprints(bucket)[source]#
This class is used to process footprints model output
- chunking_schema(time_resolved=False, high_time_resolution=False, high_spatial_resolution=False, short_lifetime=False)[source]#
Get chunking schema for footprint data.
- Parameters:
time_resolved (
bool
) – Set footprint variable to be high time resolution.high_time_resolution (
bool
) – This argument is deprecated and will be replaced in future versions with time_resolved.high_spatial_resolution (
bool
) – Set footprint variables include high and low resolution options.short_lifetime (
bool
) – Include additional particle age parameters for short lived species.
- Returns:
Chunking schema for footprint data.
- Return type:
dict
- read_data(binary_data, metadata, file_metadata)[source]#
Ready a footprint from binary data
- Parameters:
binary_data (
bytes
) – Footprint datametadata (
dict
) – Dictionary of metadatafile_metadat – File metadata
- Returns:
UUIDs of Datasources data has been assigned to
- Return type:
dict
- read_file(filepath, site, domain, model, inlet=None, height=None, met_model=None, species=None, network=None, period=None, continuous=True, chunks=None, source_format='acrg_org', retrieve_met=False, high_spatial_resolution=False, time_resolved=False, high_time_resolution=False, short_lifetime=False, if_exists='auto', save_current='auto', overwrite=False, force=False, sort=False, drop_duplicates=False, compressor=None, filters=None, optional_metadata=None)[source]#
Reads footprints data files and returns the UUIDS of the Datasources the processed data has been assigned to
- Parameters:
filepath (
list
|str
|Path
) – Path(s) of file(s) to standardisesite (
str
) – Site namedomain (
str
) – Domain of footprintsmodel (
str
) – Model used to create footprint (e.g. NAME or FLEXPART)inlet (
Optional
[str
]) – Height above ground level in metres. Format ‘NUMUNIT’ e.g. “10m”height (
Optional
[str
]) – Alias for inlet. One of height or inlet MUST be included.met_model (
Optional
[str
]) – Underlying meteorlogical model used (e.g. UKV)species (
Optional
[str
]) – Species name. Only needed if footprint is for a specific species e.g. co2 (and not inert)network (
Optional
[str
]) – Network nameperiod (
Union
[str
,tuple
,None
]) – Period of measurements. Only needed if this can not be inferred from the time coordscontinuous (
bool
) – Whether time stamps have to be continuous.chunks (
Optional
[dict
]) – Chunk schema to use when storing data the NetCDF. It expects a dictionary of dimension name and chunk size, for example {“time”: 100}. If None then a chunking schema will be set automatically by OpenGHG.source_format (
str
) – Type of data being input e.g. acrg_orgretrieve_met (
bool
) – Whether to also download meterological data for this footprints areahigh_spatial_resolution (
bool
) – Indicate footprints include both a low and high spatial resolution.time_resolved (
bool
) – Indicate footprints are high time resolution (include H_back dimension) Note this will be set to True automatically if species=”co2” (Carbon Dioxide).high_time_resolution (
bool
) – This argument is deprecated and will be replaced in future versions with time_resolved.short_lifetime (
bool
) – Indicate footprint is for a short-lived species. Needs species input. Note this will be set to True if species has an associated lifetime.if_exists (
str
) –What to do if existing data is present. - “auto” - checks new and current data for timeseries overlap
adds data if no overlap
raises DataOverlapError if there is an overlap
”new” - just include new data and ignore previous
”combine” - replace and insert new data into current timeseries
save_current (
str
) – Whether to save data in current form and create a new version. - “auto” - this will depend on if_exists input (“auto” -> False), (other -> True) - “y” / “yes” - Save current data exactly as it exists as a separate (previous) version - “n” / “no” - Allow current data to updated / deletedoverwrite (
bool
) – Deprecated. This will use options for if_exists=”new”.force (
bool
) – Force adding of data even if this is identical to data stored.sort (
bool
) – Sort data in time dimension. We recommend NOT sorting footprint data unless necessary.drop_duplicates (
bool
) – Drop duplicate timestamps, keeping the first valuecompressor (
Optional
[Any
]) – A custom compressor to use. If None, this will default to Blosc(cname=”zstd”, clevel=5, shuffle=Blosc.SHUFFLE). See https://zarr.readthedocs.io/en/stable/api/codecs.html for more information on compressors.filters (
Optional
[Any
]) – Filters to apply to the data on storage, this defaults to no filtering. See https://zarr.readthedocs.io/en/stable/tutorial.html#filters for more information on picking filters.optional_metadata (
Optional
[dict
]) – Allows to pass in additional tags to distinguish added data. e.g {“project”:”paris”, “baseline”:”Intem”}
- Returns:
UUIDs of Datasources data has been assigned to
- Return type:
dict
- static schema(particle_locations=True, high_spatial_resolution=False, time_resolved=False, high_time_resolution=False, short_lifetime=False)[source]#
Define schema for footprint Dataset.
The returned schema depends on what the footprint represents, indicated using the keywords. By default, this will include “fp” variable but this will be superceded if high_spatial_resolution or time_resolved are specified.
- Parameters:
particle_locations (
bool
) – Include 4-directional particle location variables: - “particle_location_[nesw]” and include associated additional dimensions (“height”)high_spatial_resolution (
bool
) – Set footprint variables include high and low resolution options: - “fp_low” - “fp_high” and include associated additional dimensions (“lat_high”, “lon_high”).time_resolved (
bool
) – Set footprint variable to be high time resolution - “fp_HiTRes” and include associated dimensions (“H_back”).high_time_resolution (
bool
) – This argument is deprecated and will be replaced in future versions with time_resolved.short_lifetime (
bool
) – Include additional particle age parameters for short lived species: - “mean_age_particles_[nesw]”
- Return type:
DataSchema
- Returns:
DataSchema object describing this format.
- Note: In PARIS format the coordinate dimensions are (“latitude”, “longitude”) rather than (“lat”, “lon”)
but given that all other openghg internal formats are (“lat”, “lon”), we are currently keeping all footprint internal formats consistent with this.
- static validate_data(data, particle_locations=True, high_spatial_resolution=False, time_resolved=False, high_time_resolution=False, short_lifetime=False)[source]#
Validate data against Footprint schema - definition from Footprints.schema(…) method.
- Parameters:
data (
Dataset
) – xarray Dataset in expected formatinputs. (See Footprints.schema() method for details on optional)
- Return type:
None
- Returns:
None
Raises a ValueError with details if the input data does not adhere to the Footprints schema.
openghg.store.ObsColumn#
The ObsColumn
class is used to process column / satellite observation data.
- class openghg.store.ObsColumn(bucket)[source]#
This class is used to process emissions / flux data
- read_file(filepath, species, platform='satellite', satellite=None, domain=None, selection=None, site=None, network=None, instrument=None, source_format='openghg', if_exists='auto', save_current='auto', overwrite=False, force=False, compressor=None, filters=None, chunks=None, optional_metadata=None)[source]#
Read column observation file
- Parameters:
filepath (
str
|Path
) – Path of observation filespecies (
str
) – Species name or synonym e.g. “ch4”platform (
str
) – Type of platform. Should be one of: - “satellite” - “site”satellite (
Optional
[str
]) – Name of satellite (if relevant). Should include satellite OR site.domain (
Optional
[str
]) – For satellite only. If data has been selected on an area include the identifier name for domain covered. This can map to previously defined domains (see openghg_defs “domain_info.json” file) or a newly defined domain.selection (
Optional
[str
]) – For satellite only, identifier for any data selection which has been performed on satellite data. This can be based on any form of filtering, binning etc. but should be unique compared to other selections made e.g. “land”, “glint”, “upperlimit”. If not specified, domain will be used.site (
Optional
[str
]) – Site code/name (if relevant). Should include satellite OR site.instrument (
Optional
[str
]) – Instrument name e.g. “TANSO-FTS”network (
Optional
[str
]) – Name of in-situ or satellite network e.g. “TCCON”, “GOSAT”source_format (
str
) – Type of data being input e.g. openghg (internal format)if_exists (
str
) –What to do if existing data is present. - “auto” - checks new and current data for timeseries overlap
adds data if no overlap
raises DataOverlapError if there is an overlap
”new” - just include new data and ignore previous
”combine” - replace and insert new data into current timeseries
save_current (
str
) – Whether to save data in current form and create a new version. - “auto” - this will depend on if_exists input (“auto” -> False), (other -> True) - “y” / “yes” - Save current data exactly as it exists as a separate (previous) version - “n” / “no” - Allow current data to updated / deletedoverwrite (
bool
) – Deprecated. This will use options for if_exists=”new”.force (
bool
) – Force adding of data even if this is identical to data stored.compressor (
Optional
[Any
]) – A custom compressor to use. If None, this will default to Blosc(cname=”zstd”, clevel=5, shuffle=Blosc.SHUFFLE). See https://zarr.readthedocs.io/en/stable/api/codecs.html for more information on compressors.filters (
Optional
[Any
]) – Filters to apply to the data on storage, this defaults to no filtering. See https://zarr.readthedocs.io/en/stable/tutorial.html#filters for more information on picking filters.chunks (
Optional
[dict
]) – Chunking schema to use when storing data. It expects a dictionary of dimension name and chunk size, for example {“time”: 100}. If None then a chunking schema will be set automatically by OpenGHG. See documentation for guidance on chunking: https://docs.openghg.org/tutorials/local/Adding_data/Adding_ancillary_data.html#chunking. To disable chunking pass in an empty dictionary.optional_metadata (
Optional
[dict
]) – Allows to pass in additional tags to distinguish added data. e.g {“project”:”paris”, “baseline”:”Intem”}
- Returns:
Dictionary of datasource UUIDs data assigned to
- Return type:
dict
openghg.store.ObsSurface#
The ObsSurface
class is used to process surface observation data.
- class openghg.store.ObsSurface(bucket)[source]#
This class is used to process surface observation data
- delete(uuid)[source]#
Delete a Datasource with the given UUID
This function deletes both the record of the object store in he
- Parameters:
uuid (str) – UUID of Datasource
- Return type:
None
- Returns:
None
- read_data(binary_data, metadata, file_metadata, precision_data=None, site_filepath=None)[source]#
Reads binary data passed in by serverless function. The data dictionary should contain sub-dictionaries that contain data and metadata keys.
This is clunky and the ObsSurface.read_file function could be tidied up quite a lot to be more flexible.
- Parameters:
binary_data (
bytes
) – Binary measurement datametadata (
dict
) – Metadatafile_metadata (
dict
) – File metadata such as original filenameprecision_data (
Optional
[bytes
]) – GCWERKS precision datasite_filepath (
Union
[str
,Path
,None
]) – Alternative site info file (see openghg/openghg_defs repository for format). Otherwise will use the data stored within openghg_defs/data/site_info JSON file by default.
- Returns:
Dictionary of result
- Return type:
dict
- read_file(filepath, source_format, site, network, inlet=None, height=None, instrument=None, data_level=None, data_sublevel=None, dataset_source=None, sampling_period=None, calibration_scale=None, measurement_type='insitu', verify_site_code=True, site_filepath=None, update_mismatch='never', if_exists='auto', save_current='auto', overwrite=False, force=False, compressor=None, filters=None, chunks=None, optional_metadata=None)[source]#
- Process files and store in the object store. This function
utilises the process functions of the other classes in this submodule to handle each data type.
- Parameters:
filepath (
Union
[str
,Path
,tuple
,list
]) – Filepath(s)source_format (
str
) – Data format, for example CRDS, GCWERKSsite (
str
) – Site code/namenetwork (
str
) – Network nameinlet (
Optional
[str
]) – Inlet height. Format ‘NUMUNIT’ e.g. “10m”. If retrieve multiple files pass None, OpenGHG will attempt to extract this from the file.height (
Optional
[str
]) – Alias for inlet.data. (read inlets from)
instrument (
Optional
[str
]) – Instrument namedata_level (
Union
[str
,int
,float
,None
]) –The level of quality control which has been applied to the data. This should follow the convention of:
”0”: raw sensor output
”1”: automated quality assurance (QA) performed
”2”: final data set
”3”: elaborated data products using the data
data_sublevel (
Union
[str
,float
,None
]) – Can be used to sub-categorise data (typically “L1”) depending on different QA performed before data is finalised.dataset_source (
Optional
[str
]) – Dataset source name, for example “ICOS”, “InGOS”, “European ObsPack”, “CEDA 2023.06”sampling_period (
Union
[Timedelta
,str
,None
]) – Sampling period in pandas style (e.g. 2H for 2 hour period, 2m for 2 minute period).measurement_type (
str
) – Type of measurement e.g. insitu, flaskverify_site_code (
bool
) – Verify the site codesite_filepath (
Union
[str
,Path
,None
]) –Alternative site info file (see openghg/openghg_defs repository for format). Otherwise will use the data stored within openghg_defs/data/site_info JSON file by default.
update_mismatch: This determines whether mismatches between the internal data
attributes and the supplied / derived metadata can be updated or whether this should raise an AttrMismatchError. If True, currently updates metadata with attribute value.
update_mismatch (
str
) –This determines how mismatches between the internal data “attributes” and the supplied / derived “metadata” are handled. This includes the options:
”never” - don’t update mismatches and raise an AttrMismatchError
”from_source” / “attributes” - update mismatches based on input data (e.g. data attributes)
”from_definition” / “metadata” - update mismatches based on associated data (e.g. site_info.json)
if_exists (
str
) –What to do if existing data is present. - “auto” - checks new and current data for timeseries overlap
adds data if no overlap
raises DataOverlapError if there is an overlap
”new” - just include new data and ignore previous
”combine” - replace and insert new data into current timeseries
save_current (
str
) – Whether to save data in current form and create a new version. - “auto” - this will depend on if_exists input (“auto” -> False), (other -> True) - “y” / “yes” - Save current data exactly as it exists as a separate (previous) version - “n” / “no” - Allow current data to updated / deletedoverwrite (
bool
) – Deprecated. This will use options for if_exists=”new”.force (
bool
) – Force adding of data even if this is identical to data stored.compressor (
Optional
[Any
]) – A custom compressor to use. If None, this will default to Blosc(cname=”zstd”, clevel=5, shuffle=Blosc.SHUFFLE).https (See) – //zarr.readthedocs.io/en/stable/api/codecs.html for more information on compressors.
filters (
Optional
[Any
]) – Filters to apply to the data on storage, this defaults to no filtering. See https://zarr.readthedocs.io/en/stable/tutorial.html#filters for more information on picking filterschunks (
Optional
[dict
]) – Chunking schema to use when storing data. It expects a dictionary of dimension name and chunk size, for example {“time”: 100}. If None then a chunking schema will be set automatically by OpenGHG. See documentation for guidance on chunking: https://docs.openghg.org/tutorials/local/Adding_data/Adding_ancillary_data.html#chunking. To disable chunking pass in an empty dictionary.optional_metadata (
Optional
[dict
]) – Allows to pass in additional tags to distinguish added data. e.g {“project”:”paris”, “baseline”:”Intem”}
- Returns:
Dictionary of Datasource UUIDs
- Return type:
dict
TODO: Should “measurement_type” be changed to “platform” to align with ModelScenario and ObsColumn?
- read_multisite_aqmesh(filepath, metadata_filepath, network='aqmesh_glasgow', instrument='aqmesh', sampling_period=60, measurement_type='insitu', if_exists='auto', overwrite=False)[source]#
Read AQMesh data for the Glasgow network
NOTE - temporary function until we know what kind of AQMesh data we’ll be retrieve in the future.
This data is different in that it contains multiple sites in the same file.
- Return type:
defaultdict
- static schema(species)[source]#
Define schema for surface observations Dataset.
- Only includes mandatory variables
standardised species name (e.g. “ch4”)
expected dimensions: (“time”)
Expected data types for variables and coordinates also included.
- Returns:
Contains basic schema for ObsSurface.
- Return type:
DataSchema
# TODO: Decide how to best incorporate optional variables # e.g. “ch4_variability”, “ch4_number_of_observations”
- store_data(data, if_exists='auto', overwrite=False, force=False, required_metakeys=None, compressor=None, filters=None)[source]#
This expects already standardised data such as ICOS / CEDA
- Parameters:
data (
dict
) – Dictionary of data in standard format, see the data spec underdocumentation (Development -> Data specifications in the)
if_exists (
str
) –What to do if existing data is present. - “auto” - checks new and current data for timeseries overlap
adds data if no overlap
raises DataOverlapError if there is an overlap
”new” - creates new version with just new data
”combine” - replace and insert new data into current timeseries
overwrite (
bool
) – Deprecated. This will use options for if_exists=”new”.force (
bool
) – Force adding of data even if this is identical to data stored (checked based on previously retrieved file hashes).required_metakeys (
Optional
[Sequence
]) –Keys in the metadata we should use to store this metadata in the object store if None it defaults to:
{“species”, “site”, “station_long_name”, “inlet”, “instrument”, “network”, “source_format”, “data_source”, “icos_data_level”}
compressor (
Optional
[Any
]) – A custom compressor to use. If None, this will default to Blosc(cname=”zstd”, clevel=5, shuffle=Blosc.SHUFFLE). See https://zarr.readthedocs.io/en/stable/api/codecs.html for more information on compressors.filters (
Optional
[Any
]) – Filters to apply to the data on storage, this defaults to no filtering. See https://zarr.readthedocs.io/en/stable/tutorial.html#filters for more information on picking filters.
- Return type:
Dict or None
- store_hashes(hashes)[source]#
Store hashes of data retrieved from a remote data source such as ICOS or CEDA. This takes the full dictionary of hashes, removes the ones we’ve seen before and adds the new.
- Parameters:
hashes (
dict
) – Dictionary of hashes provided by the hash_retrieved_data function- Return type:
None
- Returns:
None
- static validate_data(data, species)[source]#
Validate input data against ObsSurface schema - definition from ObsSurface.schema() method.
- Parameters:
data (
Dataset
) – xarray Dataset in expected formatspecies (
str
) – Species name
- Return type:
None
- Returns:
None
Raises a ValueError with details if the input data does not adhere to the ObsSurface schema.
openghg.store.FluxTimeseries#
The FluxTimeseries
class is used to process UK inventory data.
- class openghg.store.FluxTimeseries(bucket)[source]#
This class is used to process ond dimension timeseries data
- _data_type = 'flux_timeseries'#
_root = “FluxTimeseries” _uuid = “099b597b-0598-4efa-87dd-472dfe027f5d8” _metakey = f”{_root}/uuid/{_uuid}/metastore
- read_data(binary_data, metadata, file_metadata)[source]#
Ready a footprint from binary data
- Parameters:
binary_data (
bytes
) – Footprint datametadata (
dict
) – Dictionary of metadatafile_metadat – File metadata
- Returns:
UUIDs of Datasources data has been assigned to
- Return type:
dict
- read_file(filepath, species, source, region, domain=None, database=None, database_version=None, model=None, source_format='crf', period=None, continuous=True, if_exists='auto', save_current='auto', overwrite=False, force=False, compressor=None, filters=None, optional_metadata=None)[source]#
Read one dimension timeseries file
- Parameters:
filepath (
str
|Path
) – Path of flux timeseries / emissions timeseries filespecies (
str
) – Species namedomain (
Optional
[str
]) – Region for Flux timeseriessource (
str
) – Source of the emissions data, e.g. “energy”, “anthro”, default is ‘anthro’.region (
str
) – Region/Country of the CRF datadomain – Geographic domain, default is ‘None’. Instead region is used to identify area
database (
Optional
[str
]) – Name of database source for this input (if relevant)database_version (
Optional
[str
]) – Name of database version (if relevant)model (
Optional
[str
]) – Model name (if relevant)source_format (
str
) – Type of data being input e.g. openghg (internal format)period (
Union
[str
,tuple
,None
]) – Period of measurements. Only needed if this can not be inferred from the time coordsspecified (If) –
“yearly”, “monthly”
suitable pandas Offset Alias
tuple of (value, unit) as would be passed to pandas.Timedelta function
of (should be one) –
“yearly”, “monthly”
suitable pandas Offset Alias
tuple of (value, unit) as would be passed to pandas.Timedelta function
continuous (
bool
) – Whether time stamps have to be continuous.if_exists (
str
) –What to do if existing data is present. - “auto” - checks new and current data for timeseries overlap
adds data if no overlap
raises DataOverlapError if there is an overlap
”new” - just include new data and ignore previous
”combine” - replace and insert new data into current timeseries
save_current (
str
) – Whether to save data in current form and create a new version. - “auto” - this will depend on if_exists input (“auto” -> False), (other -> True) - “y” / “yes” - Save current data exactly as it exists as a separate (previous) version - “n” / “no” - Allow current data to updated / deletedoverwrite (
bool
) – Deprecated. This will use options for if_exists=”new”.force (
bool
) – Force adding of data even if this is identical to data stored.compressor (
Optional
[Any
]) – A custom compressor to use. If None, this will default to Blosc(cname=”zstd”, clevel=5, shuffle=Blosc.SHUFFLE). See https://zarr.readthedocs.io/en/stable/api/codecs.html for more information on compressors.filters (
Optional
[Any
]) – Filters to apply to the data on storage, this defaults to no filtering. See https://zarr.readthedocs.io/en/stable/tutorial.html#filters for more information on picking filters.optional_metadata (
Optional
[dict
]) – Allows to pass in additional tags to distinguish added data. e.g {“project”:”paris”, “baseline”:”Intem”}
- Returns:
Dictionary of datasource UUIDs data assigned to
- Return type:
dict
- static schema()[source]#
Define schema for one dimensional timeseries(FluxTimeseries) Dataset.
- Includes observation for each time of the defined domain:
- “Obs”
expected dimensions: (“time”)
Expected data types for all variables and coordinates also included.
- Returns:
Contains schema for FluxTimeseries.
- Return type:
DataSchema
- static validate_data(data)[source]#
- Return type:
None
Validate input data against FluxTimeseries schema - definition from FluxTimeseries.schema() method.
- Args:
data : xarray Dataset in expected format
- Returns:
None
- Raises: ValueError if the input data does not match the schema
to the FluxTimeseries schema.
Recombination functions#
These handle the recombination of data retrieved from the object store.
Segmentation functions#
These handle the segmentation of data ready for storage in the object store.
Metadata Handling#
The data_manager
function is used in the same way as the search functions. It takes any number of
keyword arguments for searching of metadata and a data_type
argument. It returns a DataManager object.
Data types#
These helper functions provide a useful way of retrieving the data types OpenGHG can process and their associated storage classes.